The Xanthophyll Cycle in Aquatic Phototrophs and Its Role in the Mitigation of Photoinhibition and Photodynamic Damage

نویسندگان

  • Miriam Zigman
  • Zvy Dubinsky
  • David Iluz
چکیده

Solar energy is the initial power of photosynthesis. Plants and algae cannot proceed in the absence of light, and limited light conditions will limit photosynthesis. However, the conversion of solar energy into chemical energy is a potentially hazardous business that photosynthetic organisms expertly master. Whenever sunlight can actually be converted to chemical energy, there is minimal potential for problems. However, no leaf or algal cell can utilize all the light absorbed by the antenna system during exposure to full sunlight. Excessive light may be potentially dangerous to phototrophic organisms because it has the potential to be transferred to the formation of reactive oxygen species (ROS), which can result in cell damage (Ledford &Niyogi, 2005). It can also inhibit photosynthesis and lead to photooxidative destruction of the photosynthetic apparatus photoinhibition (DemmigAdams &Adams, 2006; Lu &Vonshak, 1999). It is known that photosynthesis is the basis of crop yield in plants and primary production in algae, and photoinhibition has an obvious adverse effect on photosynthesis and the accumulation of dry weight, which could lead to a decrease of carbon assimilation by about 10%. Thus, the ability of plants and algae to dissipate excessive light energy in order to resist photoinhibition, would significantly affect plant and alga yield and primary production. In the first step of the photosynthetic process, light is intercepted by a variety of lightabsorbing substances, the photosynthetic pigments. These pigments are associated with proteins forming light-harvesting 'antennae' that have a large optical cross-section for absorbing photons whose energy is efficiently transmitted to reaction centers (Dubinsky, 1992; Emerson &Arnold, 1932; Kirk, 1994). The light energy absorbed by the chlorophyll of photosynthetic organisms drives photosynthesis and is also dissipated as heat and fluorescence. To avoid massive ROS accumulation, phytoplankton and plants employ a host of protective mechanisms (Kanervo et al., 2005; Lavaud et al., 2002) – including various alternative energy-dissipation pathways (Adams et al., 2006) and multiple antioxidant systems

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative time-resolved photosystem II chlorophyll a fluorescence analyses reveal distinctive differences between photoinhibitory reaction center damage and xanthophyll cycle-dependent energy dissipation.

The photosystem II (PSII) reaction center in higher plants is susceptible to photoinhibitory molecular damage of its component pigments and proteins upon prolonged exposure to excess light in air. Higher plants have a limited capacity to avoid such damage through dissipation, as heat, of excess absorbed light energy in the PSII light-harvesting antenna. The most important photoprotective heat d...

متن کامل

Efficiency of photoprotection in microphytobenthos: role of vertical migration and the xanthophyll cycle against photoinhibition

26 The capacity of estuarine microphytobenthos to withstand the variable and extreme 27 conditions of the intertidal environment, prone to cause photoinhibition of the 28 photosynthetic apparatus, has been attributed to particularly efficient photoprotection 29 mechanisms. However, little is known regarding its actual photoprotection capacity or 30 the mechanisms responsible for the protecting ...

متن کامل

Winter photoinhibition in the field involves different processes in four co-occurring Mediterranean tree species.

Photoinhibition was examined in four co-occurring Mediterranean evergreen tree species during two consecutive winters. In response to low temperatures and saturating light, Juniperus phoenicea L., Pinus halepensis Mill., Quercus coccifera L. and Q. ilex ssp. ballota (Desf.) Samp. exhibited marked chronic photoinhibition, indicated by low predawn maximal photochemical efficiency of photosystem I...

متن کامل

Exogenous Melatonin Mitigates Photoinhibition by Accelerating Non-photochemical Quenching in Tomato Seedlings Exposed to Moderate Light during Chilling

Melatonin plays an important role in tolerance to multiple stresses in plants. Recent studies have shown that melatonin relieves photoinhibition in plants under cold stress; however, the mechanisms are not fully understood. Non-photochemical quenching (NPQ) is a key process thermally dissipating excess light energy that plants employ as a protective mechanism to prevent the over reduction of ph...

متن کامل

Relationship between xanthophyll cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress.

Thirty days old rice plants grown under low and moderate light conditions were transferred to full sunlight to observe the extent of photoinhibitory damage and protective mechanism, and the relationship between xanthophyll cycle and nonphotochemical quenching (qN) under changing light environment. Control plants (low, moderate and sun grown) exhibited similar Fv/Fm ratio, indicating similar pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012